Understanding Ethereum's RLP
In short as RLP, RLP is the package Ethereum used to serialize all objects to the array of bytes. It is described on Yellow Paper with many formulas and is very difficult to understand.
Because Ethereum is a decentralized blockchain, that enables the execution of smart contracts and the storage of data on the blockchain, its need to be serialized or converted into a binary format, stored in a minimal amount of space in the blockchain.
RLP is a prefix-based encoding schema that encodes arbitrarily structured binary data(byte arrays) in a way that is easy to encode and decode. RLP algorithm works by recursively encoding a list of items.
An item is defined as follows:
- A string(byte array)
- A list of "items" itself
For example:
- A string(byte array), includes an empty string
- A list containing any number of string
- A complex data structure like
["cat", ["dog", "mouse"], [], ["""]]
Walk through into Yellow Paper(Appendix B)
We have three formulas that describe arbitrarily structured binary data(byte arrays):
- T: Arbitrarily structured binary data, is a set of byte arrays and structural sequences
- L: Set of all tree-like structures that are not a single leaf
- O: Set of 8-bit bytes
- B: Set of all sequences of bytes(bytes array or a leaf in tree)
- We use disjoint union to distinguish the empty byte array(in B) vs empty list(in L).
We define the RLP function as RLP through two sub-functions:
- The first handling of the byte arrays
- The second handle the sequences of further values
We will deep dive into the first function that handles the byte array, RLP(B). If the value to be serialized is a byte array, the RLP(B) will take one of three forms:
- A single byte less than 128(decimal), the output is same the input
- If the array bytes contain fewer than 56 bytes, then the output is equal to the input prefixed by the byte equal to the length of the array byte + 128
- Otherwise, the output is equal to the big-endian representation of the input length in front of the input and then preceded by (183 + the length of the big end of the input)
Second, we will see how the RLP(L) works. We use RLP(L) to encode each item, then concatenate the output.
- If the length is smaller than 56, the output is equal: 192 + length of item + item
- Otherwise, the output is equal: 247 + length of the big-endian of the length of item + the big-endian of the length of item + item
You can see s(x) is the recursive of RLP with each item.
RLP algorithm as code like(example from ethereum.org):
def rlp_encode(input):
if isinstance(input,str):
// 0x80 = 128(decimal)
if len(input) == 1 and ord(input) < 0x80: return input
else: return encode_length(len(input), 0x80) + input
elif isinstance(input,list):
output = ''
for item in input: output += rlp_encode(item)
return encode_length(len(output), 0xc0) + output
def encode_length(L,offset):
if L < 56:
return chr(L + offset)
elif L < 256**8:
BL = to_binary(L)
return chr(len(BL) + offset + 55) + BL
else:
raise Exception("input too long")
def to_binary(x):
if x == 0:
return ''
else:
return to_binary(int(x / 256)) + chr(x % 256)
You can see the example in the Ethereum documentation with some inputs:
- A String "ethereum" => ["0x88", "e", "t", "h", "e", "r", "e", "u", "m"] => because the length of this string is 8 characters, is smaller than 56. So the output is encoded_length(8, 128) + input = chr(136) + "ethereum" = ["0x88", "e", "t", "h", "e", "r", "e", "u", "m"]
- A list ["ethereum", "foundation"]:
- Same as the example above, we got the output of
rlp_encode("ethereum") = ["0x88", "e", "t", "h", "e", "r", "e", "u", "m"]
- And
rlp_encode("foundation") = ["0x8A", "f", "o", "u", "n", "d", "a", "t", "i", "o", "n"]
- So, the output is
rlp_encode(["ethereum", "foundation"]) = encode_length(20, 192) + ["0x88", "e", "t", "h", "e", "r", "e", "u", "m", "0x8A", "f", "o", "u", "n", "d", "a", "t", "i", "o", "n"] = ["0xD4", "0x88", "e", "t", "h", "e", "r", "e", "u", "m", "0x8A", "f", "o", "u", "n", "d", "a", "t", "i", "o", "n"]
- Same as the example above, we got the output of
RLP decoding
Because of the rules of RLP encoding, the input of RLP decoding is an array of binary data.
- Depending on the first byte in the input, we can determine the data type and the length of the data and offset.
- Depending on the data type and offset of data, decode the data correspondingly.
- Continue the loop to decode the remain of input.
With the RLP formulas, we can determine to rules of decoding the data type and offset by the following:
- If the range of the first byte is from [0x00, 0x7f], and the length of the input is 1, so the data type is a string and the data is the string itself.
- If the range of the first byte is from [0x80, 0xb7], the data type is a string, and the length of the string is equal to the first byte minus 0x80
- If the range of the first byte is [0xb8, 0xbf], and the length of the string whose length in bytes is equal to the first byte minus 0xb7 follows the first byte, and the string follows the length of the string;
- If the range of the first byte is [0xc0, 0xf7], and the concatenation of the RLP encodings of all items of the list which the total payload is equal to the first byte minus 0xc0 follows the first byte;
- If the range of the first byte is [0xf8, 0xff], and the total payload of the list whose length is equal to the first byte minus 0xf7 follows the first byte, and the concatenation of the RLP encodings of all items of the list follows the total payload of the list;
Source: Ethereum Docs
The pseudo code from Ethereum Docs:
def rlp_decode(input):
if len(input) == 0:
return
output = ''
(offset, dataLen, type) = decode_length(input)
if type is str:
output = instantiate_str(substr(input, offset, dataLen))
elif type is list:
output = instantiate_list(substr(input, offset, dataLen))
output + rlp_decode(substr(input, offset + dataLen))
return output
def decode_length(input):
length = len(input)
if length == 0:
raise Exception("input is null")
prefix = ord(input[0])
if prefix <= 0x7f:
return (0, 1, str)
elif prefix <= 0xb7 and length > prefix - 0x80:
strLen = prefix - 0x80
return (1, strLen, str)
elif prefix <= 0xbf and length > prefix - 0xb7 and length > prefix - 0xb7 + to_integer(substr(input, 1, prefix - 0xb7)):
lenOfStrLen = prefix - 0xb7
strLen = to_integer(substr(input, 1, lenOfStrLen))
return (1 + lenOfStrLen, strLen, str)
elif prefix <= 0xf7 and length > prefix - 0xc0:
listLen = prefix - 0xc0;
return (1, listLen, list)
elif prefix <= 0xff and length > prefix - 0xf7 and length > prefix - 0xf7 + to_integer(substr(input, 1, prefix - 0xf7)):
lenOfListLen = prefix - 0xf7
listLen = to_integer(substr(input, 1, lenOfListLen))
return (1 + lenOfListLen, listLen, list)
else:
raise Exception("input does not conform to RLP encoding form")
def to_integer(b):
length = len(b)
if length == 0:
raise Exception("input is null")
elif length == 1:
return ord(b[0])
else:
return ord(substr(b, -1)) + to_integer(substr(b, 0, -1)) * 256
Very difficult to fully understand with these formulas, so we need to debug to know what the output when we use RLP to encode/decode arbitrarily structured binary data.
Go-ethereum RLP
If you don't familiar with Golang, you can read other versions written by Typescript With me, this version is easier to understand than the original version written by Golang
RLP package structures:
├── decode.go
├── decode_tail_test.go
├── decode_test.go
├── doc.go
├── encbuffer.go
├── encbuffer_example_test.go
├── encode.go
├── encode_test.go
├── encoder_example_test.go
├── internal
│ └── rlpstruct
│ └── rlpstruct.go
├── iterator.go
├── iterator_test.go
├── raw.go
├── raw_test.go
├── rlpgen
│ ├── gen.go
│ ├── gen_test.go
│ ├── main.go
│ ├── testdata
│ │ ├── bigint.in.txt
│ │ ├── bigint.out.txt
│ │ ├── nil.in.txt
│ │ ├── nil.out.txt
│ │ ├── optional.in.txt
│ │ ├── optional.out.txt
│ │ ├── rawvalue.in.txt
│ │ ├── rawvalue.out.txt
│ │ ├── uint256.in.txt
│ │ ├── uint256.out.txt
│ │ ├── uints.in.txt
│ │ └── uints.out.txt
│ └── types.go
├── safe.go
├── typecache.go
└── unsafe.go
encode.go
First, let's see the Encode
interface
type Encoder interface {
EncodeRLP(io.Writer) error
}
This interface has only one function, that takes io.Writer
as the input, and write the output to io.Writer
directly.
Everything is stored on Ethereum blockchain so uses RLP to encode. There are so many implementations:
Next, we have a function called func Encode(w io.Writer, val interface{}) error
, that will take the w
and v
to encode to binary data.
func Encode(w io.Writer, val interface{}) error {
// Optimization: reuse *encBuffer when called by EncodeRLP.
if buf := encBufferFromWriter(w); buf != nil {
return buf.encode(val)
}
buf := getEncBuffer()
defer encBufferPool.Put(buf)
if err := buf.encode(val); err != nil {
return err
}
return buf.writeTo(w)
}
This is main function that is called by the implementations to encode the input. Go-ethereum use encBufferFromWriter
to reduce the allocation, we will go into it.
func encBufferFromWriter(w io.Writer) *encBuffer {
switch w := w.(type) {
case EncoderBuffer:
return w.buf
case *EncoderBuffer:
return w.buf
case *encBuffer:
return w
default:
return nil
}
}
The main reason because the authors are using encBuffer
struct to encode the input data. So, if the w
is encBuffer
type, we reuse it to encode the input.
But I have a question, why they need to create a new struct encBuffer
to encode? Let's see. In some previous of Go-ethereum, they don't use this struct.
The struct encBuffer
is:
// EncoderBuffer is a buffer for incremental encoding.
//
// The zero value is NOT ready for use. To get a usable buffer,
// create it using NewEncoderBuffer or call Reset.
type EncoderBuffer struct {
buf *encBuffer
dst io.Writer
ownBuffer bool
}
type listhead struct {
offset int // index of this header in string data
size int // total size of encoded data (including list headers)
}
type encBuffer struct {
str []byte // string data, contains everything except list headers
lheads []listhead // all list headers
lhsize int // sum of sizes of all encoded list headers
sizebuf [9]byte // auxiliary buffer for uint encoding
}
and in encbuffer.go
, we have a sync pool that stores encBuffer
// The global encBuffer pool.
var encBufferPool = sync.Pool{
New: func() interface{} { return new(encBuffer) },
}
In the conclusion, we have some points:
go-ethereum
useencBuffer
to store the binary output that are encoded- They use
a pool
to storeencBuffer
to reuse in the next step
Next step, we have a function buf.encode(val)
to encode val
based on what's type of val
func (buf *encBuffer) encode(val interface{}) error {
rval := reflect.ValueOf(val)
writer, err := cachedWriter(rval.Type())
if err != nil {
return err
}
return writer(rval, buf)
}
You can see, go-ethereum
uses reflection and encodes RLP based on the Go type of the value. The writer
is a function that
will encode based on the type and write to encBuffer
We have other function cachedWriter
that will return the writer
function with the Go type.
func cachedWriter(typ reflect.Type) (writer, error) {
info := theTC.info(typ)
return info.writer, info.writerErr
}
They use typeCache
struct to cache the writer of the Go type. For more detail, you can go into typecache.go
to see.
type typeCache struct {
cur atomic.Value
// This lock synchronizes writers.
mu sync.Mutex
next map[typekey]*typeinfo
}
We have:
cur
: to store the map writer. The value ofcur
ismap[typekey]*typeinfo
mu
: usesync.Mutex
to lock the synchronizes writernext
: the map stores the next map
go-ethereum
use map to store the writer function based on the Go type. This map will store in-mem when the geth
is running.
Walk through more functions inside theTC.info(typ)
, we will see the main function that determine what's the writer function
based on the typ
// encode.go
func makeWriter(typ reflect.Type, ts rlpstruct.Tags) (writer, error) {
kind := typ.Kind()
switch {
case typ == rawValueType:
return writeRawValue, nil
case typ.AssignableTo(reflect.PtrTo(bigInt)):
return writeBigIntPtr, nil
case typ.AssignableTo(bigInt):
return writeBigIntNoPtr, nil
case typ == reflect.PtrTo(u256Int):
return writeU256IntPtr, nil
case typ == u256Int:
return writeU256IntNoPtr, nil
case kind == reflect.Ptr:
return makePtrWriter(typ, ts)
case reflect.PtrTo(typ).Implements(encoderInterface):
return makeEncoderWriter(typ), nil
case isUint(kind):
return writeUint, nil
case kind == reflect.Bool:
return writeBool, nil
case kind == reflect.String:
return writeString, nil
case kind == reflect.Slice && isByte(typ.Elem()):
return writeBytes, nil
case kind == reflect.Array && isByte(typ.Elem()):
return makeByteArrayWriter(typ), nil
case kind == reflect.Slice || kind == reflect.Array:
return makeSliceWriter(typ, ts)
case kind == reflect.Struct:
return makeStructWriter(typ)
case kind == reflect.Interface:
return writeInterface, nil
default:
return nil, fmt.Errorf("rlp: type %v is not RLP-serializable", typ)
}
}
In the conclusion, we have some points:
go-ethereum
use the in-mem map to cache the writer encode function based on the Go typego-etherem
useencBuffer
struct to store the binary data that are encoded bywriter
- After we encoded the input, they will write the output back into
w
// writeTo writes the encoder output to w.
func (buf *encBuffer) writeTo(w io.Writer) (err error) {
strpos := 0
for _, head := range buf.lheads {
// write string data before header
if head.offset-strpos > 0 {
n, err := w.Write(buf.str[strpos:head.offset])
strpos += n
if err != nil {
return err
}
}
// write the header
enc := head.encode(buf.sizebuf[:])
if _, err = w.Write(enc); err != nil {
return err
}
}
if strpos < len(buf.str) {
// write string data after the last list header
_, err = w.Write(buf.str[strpos:])
}
return err
}
RLP package written by Go is very difficult to understand than
Typescript
version . But they add more technical in there to reduce the allocation, and reduce the time of encoding by using the in-mem map to store thewriter
encode function based on the Go type.
decode.go
We have the same approach as encode
with Decode interface, but now, the input of decoding is Stream
, not io.Writer
like encoding.
// ByteReader must be implemented by any input reader for a Stream. It
// is implemented by e.g. bufio.Reader and bytes.Reader.
type ByteReader interface {
io.Reader
io.ByteReader
}
// Stream can be used for piecemeal decoding of an input stream. This
// is useful if the input is very large or if the decoding rules for a
// type depend on the input structure. Stream does not keep an
// internal buffer. After decoding a value, the input reader will be
// positioned just before the type information for the next value.
//
// When decoding a list and the input position reaches the declared
// length of the list, all operations will return error EOL.
// The end of the list must be acknowledged using ListEnd to continue
// reading the enclosing list.
//
// Stream is not safe for concurrent use.
type Stream struct {
r ByteReader
remaining uint64 // number of bytes remaining to be read from r
size uint64 // size of value ahead
kinderr error // error from last readKind
stack []uint64 // list sizes
uintbuf [32]byte // auxiliary buffer for integer decoding
kind Kind // kind of value ahead
byteval byte // value of single byte in type tag
limited bool // true if input limit is in effect
}
Because the decode
works the same approach with encode
. I don't go to the deep right now. . But I have some points:
decode
use map that is cached in-mem- We have
decoder
function based on the length and the first element of the input
func makeDecoder(typ reflect.Type, tags rlpstruct.Tags) (dec decoder, err error) {
kind := typ.Kind()
switch {
case typ == rawValueType:
return decodeRawValue, nil
case typ.AssignableTo(reflect.PtrTo(bigInt)):
return decodeBigInt, nil
case typ.AssignableTo(bigInt):
return decodeBigIntNoPtr, nil
case typ == reflect.PtrTo(u256Int):
return decodeU256, nil
case typ == u256Int:
return decodeU256NoPtr, nil
case kind == reflect.Ptr:
return makePtrDecoder(typ, tags)
case reflect.PtrTo(typ).Implements(decoderInterface):
return decodeDecoder, nil
case isUint(kind):
return decodeUint, nil
case kind == reflect.Bool:
return decodeBool, nil
case kind == reflect.String:
return decodeString, nil
case kind == reflect.Slice || kind == reflect.Array:
return makeListDecoder(typ, tags)
case kind == reflect.Struct:
return makeStructDecoder(typ)
case kind == reflect.Interface:
return decodeInterface, nil
default:
return nil, fmt.Errorf("rlp: type %v is not RLP-serializable", typ)
}
}
Summary
RLP is an algorithm that is used in Ethereum to encode/decode arbitrary structured binary data. RLP is mentioned
on the Yellow Paper
but was very difficult to understand fully at first time.
Reference
- Go-ethereum written by Go
- Go-ethereum analysis
- Yellow Paper
- Documentation
- Medium
- Go-ethereum monorepo written by JS
Note
One of the first public articles I have written in English, so maybe this article has any mistakes about English or knowledge, feel free to tell me if you see any. Love you all . If you are interested in this article, give me a star on my Github
All rights reserved