Classification of MNIST handwritten characters by Keras
Bài đăng này đã không được cập nhật trong 3 năm
Overview
This time, we will use keras to classify 1 to 9 characters from the image dataset that contains a lot of handwritten characters called MNIST.
Import needed Libraries:
import os.re
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
import keras
from keras.datasets import mnist
Download MNIST
Divide the data for training and testing
Next, the training data is divided into training and verification data at a ratio of 8:2.
from keras.datasets import mnist
from sklearn.model_selection import train_test_split
(train_data, train_labels), (test_data, test_labels) = mnist.load_data()
x_train, x_valid, y_train, y_valid = train_test_split(train_data, train_labels, test_size=0.2)
Resize the image data and label correctly
- Since x_train and x_valid are currently (4800,28,28), (1200,28,28), in order to make them usable for learning keras models (4800,28,28,1), (1200, Converted to the form 28,28,1)
- Convert the data type of image data to float type
- Since the pixel value of the image is 0 to 255 and the numerical value is large, it is converted between 0 and 1.
- Set the correct label to one-hot-encoding
from keras.utils import to_categorical
#①
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_valid = x_valid.reshape(x_valid.shape[0], 28, 28, 1)
#②
x_train = x_train.astype('float32')
x_valid = x_valid.astype('float32')
#③
x_train /= 255
x_valid /= 255
#④
y_train = keras.utils.to_categorical(y_train, 10)
y_valid = keras.utils.to_categorical(y_valid, 10)
Create Model
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_2 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_3 (Conv2D) (None, 24, 24, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 12, 12, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 9216) 0
_________________________________________________________________
dense_2 (Dense) (None, 128) 1179776
_________________________________________________________________
dropout_3 (Dropout) (None, 128) 0
_________________________________________________________________
dense_3 (Dense) (None, 10) 1290
=================================================================
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0
_________________________________________________________________
Compile model
from keras.optimizers import RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
Image padding and learning
datagen = ImageDataGenerator(
featurewise_center=False, # Adjust the average input to 0 across the dataset
samplewise_center=False, # Adjust the average of each sample to 0
featurewise_std_normalization=False, # Normalize the input with the standard deviation of the dataset
samplewise_std_normalization=False, # Normalize each input with its standard deviation
zca_whitening=False, # ZCA Whitening Epsilon
rotation_range=50, #Rotation angle (-50 to 50 degrees)
width_shift_range=0.3, # Left and right slide width
height_shift_range=0.2, #Up and down slide width
zoom_range=[1.0,1.5], # Enlargement / reduction rate
horizontal_flip=False, # Do not flip horizontally
vertical_flip=False)
hist = model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train)/32, epochs=10,
validation_data=(x_valid, y_valid)).history
Display accuracy
# Precision plot
plt.plot(hist['accuracy'], marker='.', label='acc')
plt.plot(hist['val_accuracy'], marker='.', label='val_acc')
plt.title('model accuracy')
plt.grid()
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.legend(loc='best')
plt.show()
# Loss plot
plt.plot(hist['loss'], marker='.', label='loss')
plt.plot(hist['val_loss'], marker='.', label='val_loss')
plt.title('model loss')
plt.grid()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(loc='best')
plt.show()
Evaluation of accuracy with test data
test_data = test_data.reshape(test_data.shape[0], 28, 28, 1)
test_data = test_data.astype('float32')
test_data /= 255
test_labels = keras.utils.to_categorical(test_labels, 10)
score = model.evaluate(test_data, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
All rights reserved